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Abstract

‘Two theoretical descriptions have been developed for the phase boundary
dynamics during crystallization of amorphous films by scanning with the slit
image of a cw laser or of any cw energy beam. The first reduces the problem
to the solution of a one-dimensional integral equation, which allows a choice
of initial conditions. Depending on the background temperature, numerical
solutions yield either periodic or runaway motion of the amorphous-crystalline
(a-c) boundary, as observed in experiments on scanned laser crystallization of
thin films of a-Ge on fused-silica substrates. The calculations give a
semi-quantitative fit to the experimental results for the spatial periodicity
observed in the crystallized films as a function of background temperature.
Profiles of film temperature as a function of distance from the laser image at
successive times have been computed for both the periodic and runaway cases.
The model qualitatively explains many of the effects observed during scanned
cw laser crystallization, including periodic fluctuations in 1ight emission,
The second theoretical description is a more exact two-dimensional treatment,
applicable only to cases of steady-state motion of the a-c boundary, which
rigorously handles heat flow into the substrate. This treatment has been used
to calculate the boundary velocity during steady-state runawayiEBIhe
dependence of this velocity on background temperature and on film ;ﬁd‘“
substrate thermal properties and thickness has been determined. At the
minimum background temperature required for runaway the calculated value of

the steady-state velocity is ~ 140 cm/sec for the case of a Ge film 0.3 um

2 0MEE

oAt s A




crmmmar e g

thick on a fused-silica substrate 1 mm thick. Experimental values lie in the
range 100-300 cm/sec. A class of laser-controlled steady-state solutions has
been obtained for which the boundary velocity is equal to the laser scanning PP

velocity but lower than the boundary velocity for uncontrolled runaway. The

existence of these solutions suggests the possibility of preparing
single-crystal semiconductor sheets by scanning amorphous films in a manner
that achieves uniform, laser-controlled motion of the a-c boundary rather than

either periodic or runaway motion.
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ILLUSTRATIONS

1 Schematic representation of laser crystallization experiment.
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Y S(1).
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(upper and lower, respectively).
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for several values of t. Parameters were chosen to illustrate
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I. Introduction

The study of the transformation of semiconductor films frqm the
amorphous to the crystalline state has become a matter of great interest in
the last few years. The time dependence of the transformation has been
investigated as a function of film temperature for Gel and Si,2 and the latent T

heat of transformation and transformation temperature has been measured for 4
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. Ge,3,4 Si,4 and Ge-Si alloys.4 The so-called “explosive" transformation of

semiconductor films has been reported by a number of workers,5 and the

velocity of the transformation has been measured.6
We have recently reported the observation of a number of unusual

phenomena during a study of the laser crystallization of amorphous Ge films./

These phenomena included the formation of periodic structural features,

RE PR TS L

pulsations of film temperature during laser scanning, and runaway
crystallization of the entire film following momentary contact with the laser

image. To provide a qualitative description of the laser-crystallization

e,

process, we presented a one-dimensional integral equation description of the
amorphous-crystalline (a-c) phase boundary motion,8 which takes into account
the latent heat emitted during the a-c transformation. Numerical solution of
the integral equatior provides considerable insight into the dynamics of the
‘ a-c boundary. The results were used to obtain a semiquantitative fit of the

temperature dependence of the structural periodicity observed in

crystallization of amorphous Ge films on fused silica substrates.




In this report we present a somewhat improved version of the
one-dimensional integral equation description of laser crystallization which
takes account of the loss of heat to the film substrate by introducing into
the equation an ad-hoc exponential time dependent damping factor. The results
obtained for the motion of the a-c boundary are qualitatively very similar to
those obtained earlier.8 The solution of the integral equation is used to
obtain series of plots of temperature as a function of lateral position in the
film at fixed times after the onset of the crystallization process. These
plots provide an understanding of the temperature pulsations during the
formation of periodic structures in film morphology, as well as a vivid
picture of the onset of a-c phase boundary runaway. The general features of
the model are strongly supported by our recent experimental study of a-c
boundary dynamics during laser crystal]ization.9

The one-dimensional integral equation solutions provide an approximate
description of transient as well as steady-state behavior of the a-c phase
boundary motion. On the other hand, we have obtained a class of less
approximate two-dimensional solutions which are stationary in a frame of
reference moving with the a-c phase bounary. It is far more complicated to
try to obtain transient solutions of the two-dimensional problem. The
stationary solutions are exact if the temperature dependence of film and
substrate properties as well as differences in amorphous and crystalline
properties are neglected. The solutions allow a calculation of the a-c

runaway boundary velocity, as well as the velocity of the boundary when the
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laser controls its motion. The runaway velocities calculated are in
reasonable agreement with observation.

In Section II of this paper we present the transient and periodic
steady-state solutions of the one-dimensional integral equation description of
laser crystallization. The model results are compared to experimental results
for laser crystallization of a-Ge. In Section III we obtain and compare the
steady state runaway solutions of the integral equation approximation and the
two dimensional model. In section IV we consider steady state laser-quided
solutions obtained from the integral equation approximation and the exact
model. In Section V the results obtained and the possibility of achieving
steady state laser-guided a-c boundary motion are discussed. The numerical
solution of the integral equation is discussed in Appendix A, and the
stationary solution of the exact two-dimensional problem is derived in

Appendix B.

II. Transient and Periodic Solutions of the Integral Equation

A. Derivation of the Integral Equation

When the temperature of an amorphous semiconductor film is raised,
tranformation to the stable crystalline form takes place at a rate that
increases exponentially with temperature,1-2 so that over a narrow temperature
interval at a temperature ~ T, the ratio of the time taken for a laser scan
changes from >>1 to <<1. We therefore argue that a reasonable description of
the tranformation is given by assuming that it occurs when the amorphous film

reaches a critical temperature T.. Support for this point of view comes from
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the observation of a rather sharply defined transformation temperature in
latent heat measurements.? It has been suggestedlO that the transformation may
in fact correspond to the change from the amorphous to the liquid state,
followed by a transformation to the crystalline state. In this case the
existence of a well defined transition temperature T. is expected. The
assumption of a transformation at a constant temperature T. should be a
reasonable approximation in either case, and is justified by the good
description of experiment that results. The modification of this assumption,
and the detailed nature of the transformation are considered further in the
discussion of Sec. V.

We assume that the temperature dependence of the film properties and the
difference in these properties between the amorpﬂous and crystalline states
can be neglected. This is an acceptable approximation at temperatures in the
range of the amorphous-crystalline transformation (~ 500-700°C for Ge). With
these simplifying assumptions, an integral equation formalismll can be used to
describe the motion of the phase boundary. The geometry assumed for the laser
crystallization calculation is shown schematically in Fig. 1. The
semiconductor film, which is deposited on a thick substrate, is of infinite
extent in the y and z directions and so thin that 1ts temperature is constant
in the x direction. The laser slit image is of infinite length in the z
direction and moves at a velocity v in the positive y direction. At time t =

0, the phase boundary is located at y,, with the crystalline phase to the left

(y < yo) and the untransformed amorphous phase to the right (y > yo). The
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laser image carries with it a steady state temperature profile To (y-vt). At
t = 0, the temperature at the phase boundary reaches Tc and the boundary
begins to move irreversibly toward the right, with heat being liberated at a
rate per boundary unit cross sectional area of prY(t), where L is the latent
heat of a-c transformation of the semiconductor, p is the semiconductor
density, Y(t) is the position of the boundary at time t, and we have included
a factor f which is less than 1 and accounts in an approximate way for the
loss of a fraction (1-f) of the latent heat to the substrate as it is
liberated. In the present version, we will also include an exponential
damping factor y to represent the eventual diffusion into the substrate of the
fraction f of the heat propagating in the film., We shall see that f and Ys
which are introduced as ad hoc parameters in the one-dimensional integral
equation, have their counterparts in the two dimensional steady state model
(Sec. I1IB), where they are determined in the course of the calculation,
leaving no adjustable parameters. The effect of strain and other mechanical
forces is not explicitly included, although L could include a contribution due
to strain. Then the temperature T(y,t) at any point y along the film at time

t is given by the one-dimensional integral relationll

Tlyst) = To (y-vt) + (1)

t .
{L fo Y(t°) lexp {-v [t-t‘]}] [exp {-L{'IT(?- Y_t,F_’ 2}] [4xd" 12 [gop 7712 at-

where C is the specific heat of the film, x = K/Cp defines its thermal
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diffusivity, K is its thermal conductivity, and y is a phenomenological
damping factor.

Equation (1) has a simple physical interpretation. It states that the i

temperature at a point y at time t is a superposition of the contribution due
to the moving laser, Ty (y-vt), and the sum of contributions due to sources of
_ heat fLoY(t~)dt~, emitted at positions Y(t“) at earlier times t°. The source

function or Green's function

- t t t-
[exp ! wK

describes the one-dimensional diffusion of heat away from the source, and the

$

p factor expl-yft-t']: represents the decay of heat out of the film and into the

substrate or atmosphere.
An integral equation for Y(t) can be obtained by using the condition

that the temperaure at the phase boundary is T., or

T LY(t),t] =T . (2)

For purposes of calculation, it is convenient to rewrite Eq. (2) in the frame
of reference moving with the laser image. We introduce the position variable

u(t) = y(t) -vt, where u(t) is measured from the center of the laser image as
origin. The temperature To(u) is modeled in the form To(u) = Tp + AT, exp

[-(u/a)2], where Tp fs a uniform, time-independent background temperature and

the temperature contribution due to the laser is described by a Gaussian of

width a and magnitude 4AT,, Finally, introducing a unit of length d for
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normalization purposes and normalizing quantities, we can write the fntegral

equation for the motion of the phase boundary as
l1=aexp L |S‘1!|Z§
b

+n fr T8(17) + VI/(r-11)1/2} « .
o .

- Sy ob S

[exD {-r(r-1°) )]Fxp -[s(1)-5(77) + V (=712 / (r-r')}h‘ (3) !
where a = AT¢/(Tc-Tp), (42)
n=fn%, n" = L/Cel/2(TcTp), (4b)

124 «t/d2, V =dv/8k, S =U/d, § (v°) = [dS(1")/dx*], T = (d2/4«)y, b = a/d,

o R A SN A ey Aecw

and U is the position of the phase boundary measured from the center of the
laser image. For the discussion of this section, it is convenient to choose
d =a, sothat b = 1,

Equation (3) is not in itself sufficient to give physically acceptable .
solutions for the motion of the phase boundary, since it allows negative values

of [8(t°) + V], which imply the unphysical motion of the phase boundary back

toward the laser image, with the raconversion of crystalline material to the .
amorphous state, accompanied by the reabsorption of latent heat. To constrain
Eq. (3) to physically acceptable solutions, we require that when the numerical

solution of Eq. (3) yields [§(t°) + V] < 0, this quantity is to be set equal

to zero, with the phase boundary remaining stationary.
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Equation (3) has been solved numerically (see appendix A) to obtain S as
a function of t for representative values of a, n, V, and T, with the boundary
conditions that $(t) = 0 at t = 0 and that S(0) is given by 1 = a exp
{-[5(0)12}. The values of the parameters have been chosen for convenience in
numerical solution of Eq. (3) rather than an optimal fit to experimental
conditions. Figure 2 shows plots of S vs t for V = 0,3, I' = 30 and three
increasing values of n, with a increasing in proportion to n {which
corresponds, from Eqs. (4a) and (4b), to increasing T, toward T. while holding
ATy fixed.) For each value of n, S initially increases rapidly because the
latent heat liberated by the phase transformation raises the temperature ahead
of the boundary, accelerating its forward motion. As the boundary moves away
from the laser image, the contribution of the laser to the temperature ahead of
the boundary decreases rapidly. For n = 0.3, the boundary motion soon
decelerates, and the boundary comes to rest, remaining fixed for a time
interval during which its temperature begins to drop rapidly below T. and S
decreases with velocity § = -V, With the approach of the laser image the
boundary temperature gradually increases to Tc, the boundary once more moves
forward, and S again increases. This cycle is repeated indefinitely,
resulting in the oscillations in S seen for n = 0.3 in Fig. 2. The inset in
Fig. 2 shows the result of an experiment9 which measures the infrared light
transmitted through a thin film of Ge as the a-c boundary moves in a cw laser

crystallization experiment. Since the transmission of crystalline Ge is much

greater than that of amorphous Ge, the changes in transmitted 1ight signal
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with time are proportional to the a-c boundary position with time., The
similarity between the oscillations observed in the experiment and those shown
in the curve for n= 0.3 is evident.

When n 1s increased by increasing Tp, less heat is required to raise
the temperature of the film to T. ahead of the laser i{mage, and the phase
boundary moves farther beyond the laser before it decelerates and comes to
rest. This trend is illustrated by the calculated curve for n = 0.6 in Fig. 2
and leads to motion with a longer period. When n becomes large enough, the
heat liberated during crystallization is sufficient to sustain the
transformation, causing the boundary to “run away" from the laser image. This
situation, which is 1llustrated by the curve for n = 0.8 in Fig. 2, accounts
for the observation that for high enough background temperature the entire
film is crystallized following momentary contact with the laser image.

In addition to explaining runaway crystallization, the proposed model
can also explain our other qualitative observations on laser crystallization.
The model does not directly predict observable structural changes in the
laser-treated films. However, different regions of such films can be expected
to differ in microstructure depending on their rates of transformation and
therefore on their thermal history. This suggests that the periodic
structural features observed on laser-crystallized films (see Figs. 3 and 4)
can be attributed to oscillations in S 1ike those implied by the curves for
n=0.3 and 0.6 in Fig. 2, Furthermore, for sufficiently high values of n

these oscillations produce large fluctuations in the rate of heat liberation
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and therefore in temperature. This can explain the per!odic fluctuations in
light emission observed during some laser crystallization experiments (see
Sec. II C).

B. Comparison with Experiment o

In order to carry out a semi-quantitative test of the model, we have
measured the spatial period of the structural features of laser-crystallized
Ge films as a function of Tb.7 Experiments were performed on amorphous films
0.3 um thick, deposited on fused silica substrates and scanned at v = 0.5
cm/sec with a slit image of a2 cw Nd:YAG 1laser, Initially, a film at room
temperature was irradiated at a laser power level just high enough to produce
crystallization, which yielded structure in the transformed film with a
spatial period of ~ 50 um. In the following experiments each film was heated
to a successively higher value of Tp, the laser scanned at the same power
level, and the spacing measured after crystallization. This procedure was
continued until Ty approached the value resulting in runaway.

The periodic features obtained by crystallization of a film with Tp of
room temperature are shown in Fig. 3, an optical transmission micrograph,
These features are shown at higher magnification by the left side of Fig. 4,
which is a bright-field micrograph obtained by transmission electron
microscopy (TEM) using 125 keV electrons. Each feature consists of four
different regfons: first a narrow amorphous region, then a region containing

a mixture of amorphous material and fine grains, next a broad region of fine

grains, and finally another broad region of much larger, elongated
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crystallites aligned parallel to each other., The fine-grained region yields
transmission electron diffraction patterns like the one shown at the upper
right of Fig. 4, with the rings typical of polycrystalline material. The
large crystallites of the final region are clearly visible as ribbon-like
structures in the lower left corner of the TEM micrograph, and yield
characteristic single-crystal transmission electron diffraction patterns, as
illustrated at the lower right of Fig. 4. It should be emphasized that these
large aligned crystallites are produced without the presence of a relief
structure in the amorphous silica substrate.12 The nature of the crystalline
structure within each period is discussed further in Sec. V.

To use the model to calculate the spatial period in the film, we assume
that this period is equal to the distance AY traversed by the a-c phase
poundary during each of its successive jumps, from the point where
crystallization is initiated by the approaching laser to the point where the
boundary comes to rest ahead of the laser. This distance is just equal to
(aVat), where V is the normalized laser scanning velocity and At is the
normalized time interval between the beginnings of two successive jumps, i.e.,
the period of the oscillations in S 1llustrated by the curves for n = 0.3 and
0.6 in Fig. 2.

To obtain a relationship between AY and Tp, we first used Eq. (3) to
calculate VAt as a function of n for representative values of o, V, and T,
Because of the introduction of the new damping parameter I, the results

obtained are numerically somewhat different from those reported earlier,’,8
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i but are qualitatively unchanged, The calculated curve for a = 6 n
% ; (corresponding to fixed 4AT,), V = 0.3, and T = 30 is shown in Fig. 5. With
1 ' increasing n, At and therefore VAt increase rapidly, leading to boundary
runaway by n ~ 0,69. For a given value of n, VAr is found to be quite
insensitive to either a or V, showing that the boundary jump distance is
determined primarily by the properties of the film and by Tp, and does not
depend strongly on either the power or velocity of the laser.

In order to compare theory with experiment, the curve of VAt vs n shown
in Fig. 5 was used to obtain curves relating the ratfos aAY/AYy and Tp/Te,
where AY, is the spatial period in the film (i.e., the boundary jump distance)

for Ty of room temperature. To calculate these curves, Eq. (4b) was rewritten

in the lumped-parameter form mw=ng/(1-Tp/Tc), where ng = fL/#l/2CT.. If Tp and
Tc are expressed in °C, room temperaure is much less than T¢, so that ng ~ n
at room temperature, and AY, corresponds to ng. Curves of aY/aAYq vs Tp/Te =
1-ng/n were calculated by adopting pairs of numerical values of ny and T,
then compared with the experimental points (for each point, the adopted value
of T was used to determine Tp/Tc). A reasonable overall fit has been
obtained, as shown in Fig.6, for ny ~ 0.22 and T, ~ 680°C, The abrupt increase
in AY/AYy when Tp/T. exceeds about 0.6 is associated with the approach of Tp
to the value Tp above which laser irradiation results in boundary runaway.
From Fig. 6, using T ~ 680°C, Tp ~ [0.7 Tc] = 500°C. It is interesting to
note that Bagley and ChenlO predict a transformation of a-Ge to the 1iquid i 1

state at a temperature of 696°C, well below the crystalline-to-liquid

16 . b
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transition temperature (937°C), and close to the value of ~ 680°C obtained

. from our analysis.

4 From the definition of ng, fL = n1/2CTeng. Taking C = 0.08 cal/goC for
' amorphous Ge (Ref. 3) and the values of T and ny used for Fig. 6, we obtain
fL = 21,4 cal/g. In calorimetric measurements made during the rapid heating
of amorphous Ge films, Fan and Anderson4 observed a sharp transition at ~

5010C and measured L = 39,8 cal/g. Using this value for L yields the result f

~ 0,54, The value of f obtained seems large, and is discussed further in

Sec, IIIB,

! The values of S{ 1) plotted in Fig. 2 for the regions in which the phase
boundary moves away from the laser image are not quantitatively correct, since
the calculated values of S in this region increase more steeply as the size of
the interval &t chosen for the numerical integration of Eq. (3) is decreased.
An examination of the integral equation indicates that in the beginning of
these regions its solutions is singular and the initial velocity is infirite.
This represents a limitation of the model since we have implicitly assumed
that growth of the crystalline phase can follow at all times the requirements
of the solution of the heat flow problem, In fact, the failure of this
assumption may account for the presence of amorphous and fine-grained material
in the initial portion of each periodic feature of the laser-crystallized
films. Since the calculated values of S at which the boundary comes to rest
approach a limit as &1 decreases, the compued spatial periods are reasonably

reliable.
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The Gaussian width of the laser temperature profile can be determined
from the relationship a = aY/Vat. From the measured AYg = 50 m at room
temperature and VAt ~ 0.3 corresponding to ny = 0.22 in Fig. 5, a is ~ 170 m,
a reasonable value. The scanning velocity v corresponding to the normalized
velocity V in our calculation can be obtained by using the relation
v = 4cV¥/a. A value for « of ~ 0.09 cm/sec s estimated by taking
K = 0.035 cal/cm sec°C,13 p ~ 5 g/cm3, and C = 0,08 cal/g0C. The value of
normalized laser scan velocity used in our calculations, which was chosen
for convenience in numerical integration, was V = 0.3. This corresponds to a
laser scan velocity v of ~ 6 cm/sec, much higher than the actual value of 0.5
cm/sec used in our experiments. As indicated above, the results of our
analysis of periodic a-c boundary motion are insensitive to the value of v
assumed for the calculation as long as v is much less than the boundary
velocity vac. For both runaway5 and periodic motion9 of the boundary.
experimental values of vac lie in the range of 100 -300 cm/sec.

C. Temperature Distribution During Periodic Boundary Motion

Once the a-c boundary position as a function of time, S(t), is known,
Eq. (1) can be used to calculate the temperature at an arbitrary point S*
in the film at time t. The resulting expression for the reduced temperature
in terms of normalized quantities in the frame of reference moving with the

laser is:
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T (S°,1) = aexp {-[S-]2}

+n fT S (v°) + V1/(1-1°)1/2} x
o

[exp {-T (t=-71") }][exp {-[S” - S(°) + V (1-1’)]2/(1-1")}]d1’ (5)
where the reduced temperature is

T2 (s-,1) = T(S%71)-Tp .
T Te-Th
It can be seen that when S” is the position of the a-c boundary, S(r),
T(S%y1) = Te, T7(S%, 1) = 1, and Eq. (5) becomes the integral equation (3).
The numerical evaluation of Eq. (5) is discussed in Appendix A.

To 1llustrate the temperature fluctuations occurring during periodic
boundary motion, we have used Eq. (5) to calculate T“(S”,t) as a function of
S“ for several fixed values of 1, for the case o= 3.6, = 0,6, V = 0,3, and T
= 30, The results are shown in Fig, 7. It can be seen that during the forward
motion of the a-c phase boundary, a temperaure pulse develops and propagates
away from the center of the laser temperature profile. Before the pulse can
escape, however, its motion stalls and it decays.

The case of the periodic fluctuations in 1ight emission observed in
some experiments is {llustrated in Fig. 8 by the case 1.2, n= 0.6, V = 0.3,
and T = 30. In this case the laser temperature contribution is just barely
large enough tn initiate a-¢ boundary motion, and the latent heat released is

enough to cause a sharp rise in temperature accompanied by the emission of
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Fig. 7. Normalized temperature distribution T“(S”, 1) as a function !
of S” for several values of 1. Parameters were chosen to illustrate )
the case of periodic a-c boundary motion.

22

— ———
S—— - ——— S ——




Sr e e e

83-4705 :
as).2 ' i

7n =06
V03
I'=30

- Am—————_-

0.035

!

0.015

REDUCED TEMPERATURE T'(S’,t)

o

0.5 1.0 1.5 20 25
sl

Fig. 8. Normalized temperature distribution T°(S*, 1) as a function of
S” for several values of t, illustrating periodic temperature flare-up.




black body visible radiation. The peak temperature Tp reached can be
calculated for this example by noting that

Tp=Tp + Tp” (T - Tp), (6)

where Tp” is the peak value reached in Fig. 8, Equation (6) can be rewritten
Tp = Te [(1- T0) + Tp~(M)] .
n n

Using T = 680°C, ny = 0,22, n= 0.6, and Tp” ~ 2,2, we have

Tp = 9860C .
Although the numerical result is only approximate (since the computed
velocity of the a-c¢ boundary depends on the time interval &t chosen for
numerical integration), the calculation indicates that a large rise in

temperature, and therefore 1ight emission, can occur during a-c boundary

motion.

I1I. Steady State Runaway Solutions

A. Integral Equation Model

As we have seen in Sec. IIA, for large enough values of n and
relatively small values of normalized laser scan velocity V, the solutions of
Eq. (3) are of the runaway type with the a-c boundary escaping from the
region of the laser image and moving far ahead of it. In this case, Eq. (3)
can be solved exactly without the need for numerical integration, by making

the assumption that a steady state, constant velocity solutfon exists after

24

PR QU T CE G el

LR




- . —
AR '-;"1‘{“ N o .
R S R T SR :

L ———— ——————

the passage of a long enough time tg. For the boundary far ahead of the laser
image the laser contribution to Eq. (3) is negligible. We rewrite Eq. (3)

at time 15 in the frame of reference moving with the boundary at the
normalized velocity Vac >> V, with Va¢ to be determined. In this frame of
reference, V is replaced by Vac, S(t) = S(t°), and §(1*) = 0 (since the

solution is stationary). Equation (3) then becomes

To
1=n [ [Vae/(r 1°)1/2] x
0

[exp {-T (1-7°) )][exp -[Vac (+17)12/(1-17) }]dr‘. (7)

! Introducing the new variable z2 = (r + Vacz) (v-t*), Eq. (7) can be rewritten

[r+ vac2]1/21—°1/2 522

1=n Vac x2 [ dz
172 o
[r+ Vac2]
= n wl/2 Vac erf ([T + Vy2]1/21/2 ) . (8)
2
[T+ Vac2]

2
where erf {x} = 2 [X e=Z" dz, the error function.
[ [«]




The error function approaches 1 for x > 2. Therefore, for

[r+ Vacz]l/2 1 1/2 > 2, Eq. (8) reduces to

1 = nal/2 Vac . (9)
1
[T+ Vac?]

Equation (9) can be used to determine the runaway a-c boundary velocity Vac

from the values of n and I:

172
[ 1]

It can be seen that Eq. (10) has no solution for any value of Vs, no matter
how large, unless n x 1/2 > 1, or n > 0.56.

In the runaway case, Eq. (5) for the reduced temperature distribution
can also be evaluated exactly for large 1. In the same frame of reference

moving with normalized velocity Vac, Eq. (5) becomes

T#(S“) = n jt° [Vae/(t=17)1/2] [exp T (v-1°) }] X

(]

Fxp {-[S° + Vac (-77)22/ (r-r‘)%]dr‘ , (11)
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where S” is measured from the position of the a-¢ phase houndary. Eq, (11)

can be written,

T-(s°) = n_ Vac x
172
[T+ V5e8]

[T+ Vpc2]1/2 <, 1/2

. 2 2,2
2 e-25 Vac/ e-Z e-1/2 4, (12)
0

where q2 = S<2 [T + V.2 .

Using the known definite integral,

« -p222  _q?2/22 -2pq
[ e e dz = V/n e , (p,a > 0)
0 2

we obtain, for large 1y,

1/2
/2 Vac e ~2S%Vac -2 [T+ Vac21l/2 45t | (12)

1/2
[+ Vac2]

T2(5°)= nnl/2

For S° = 0, corresponding to the position of the a-c boundary, T°(5°) = 1, and
£q9. (13) reduces to Eq. (9), as it should,
To explore the approach to the steady-state runaway terperature

distribution, we have used the values of S(1) obtained from numerical

integration of Eq. (3) for a = 2,0, n= 0.8, V= 0,3, and T~ = 30, to calculate
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Fig. 9. Normalized temperature distribution T“(S”, t) as a function of S* !
for several values of t. The parameter values o = 2.0, n = 0.8, V = 0.3 . |
and T = 30 have been chosen to illustrate the case of runaway. J
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T-(S’,1) from Eq. (5) for several values of . The results are shown in Fig.
9. In contrast to the periodic solution case shown in Fig. 7, the a-c
boundary in the runaway case develops & well-defined peak-structure in
T°(S”,1), which propagates away from the laser image as t increases. The
velocity of propagation of the a-c boundary and the amplitude and shape of the
propagating temperature pulse shown in Fig. 9 are not in agreement with the
exact 1imiting results given by Eqs. (10) and (13), respectively. Thus, from
Eq. (10) with T = 30 and n = 0.8 we have the exact normalized velocity Vac =
5.45, much less than the normalized velocity obtained from numerical

integration and indicated by Fig. 9. These discrepancies may in part be due

to computational problems, but may also be due to a slow approach to the
steady state. (It should be noted that at the maximum S(t) shown, the a-c
boundary has moved only a few times the Gaussian width, ~ 170 m, from the
laser beam.)

B. Two-Dimensional Solution

In Appendix B we obtain expressions for the temperature distribution in
the steady state a-c boundary runaway condition for a semiconductor film as a
function of normalized distance S* from the boundary by the solution of a }
two-dimensional bounary value problem. In this treatment the flow of heat

into the substrate is handled exactly, and it is not necessary to introduce

.

N

ad-hoc parameters equivalent to f and y of the one-dimensional integral -

equation model. The solution of the problem is discussed in Appendix B.
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Equations (B31la) and (B31b) give the temperature distribution T1(S*) in
the semiconductor film of thickness by supported on a substrate of thickness
b2 as a function of steady state velocity V of the a-c boundary. If the a-c

boundary is at a temperature T., then we can rewrite Eqs. (B3la) and (B31b) in
the form
~VacS” -2 Tne + Vac211/2 |57
T*(S°) = nVac /2 ] & e o f +(vac) ,($2 < 0)
ng n
[rn+ + Vac2] (143)

“2VacS” =2[ Ty + Vac2]1/2 |-
T#(S%) = nVge w2 § & C e "M TAC 5, (Vac), (S° > 0) (14b)
n- 177 n-
[Tn- + Vac?]

where

T7(s°) = T1(S-) - Tp

c-'b
n’ = 157 ’ (14c)
v Ci(T¢ - Tp)
f (V) = 1

nt
Qnt (mt+V)
B = Kobgp/Kiby and M = q/«@p , and S” is the normalized distance from

the a-c boundary, Vac 1s the normalized a-c boundary velocity. For the

normalization unit of length d we use ba. Subscripts 1 and 2 refer to laser
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crystallized film and sudstrate, respectively. The In4 and TIn.are roots of a

transcendental equation, (B26b), and the Q,* are given by the expression

(B26a) evaluated for Inpt.

One case for which the solution of Eqs. (14a) and (14b) can be readily

evaluated is a thin amo:phous film on a thick substrate with identical thermal

properties (M = 1, 8 = bp/by > 1). For this case,

f =f =2/ T =1 = (2n+ 1)242/16.
n+ n- nt n-

The general condition determining the steady state a-c boundary

velocity Vac is that at §° =0, T°(0) = 1 or,

1 = nVacnt/2 o+ (Vac) = n*Vacnl/2 § fn- (Vac) .
n+ n- 1/2
[T+ Vac?] [r +Vac2]
n* n-

It is interesting to compare the results of Eqs. (14) and (15) with the

(15)

one-dimensional integral equation results of Egqs. (13) and (9), respectively.

Noting that n = fn” , it can be seen that Eqs. (13) and (9) represent

approximations in which single average terms have replaced sums of terms of

the same form in the two dimensional result.
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We define the functions in the summation in Eq. (14a) and (14b) as

-2vs- -2[r  + v231/2 |s-|
\ F¥s-,v) =] e e nt (v). (16)
i nt 172 nt
. [r +v2]
nt
| S F¥(S-,V) is proportional to the steady-state temperature distribution due to a
r slit image source of heat scanned with normalized velocity V along the surface

of a semiconductor film. When evaluated for V = V4., it yields the shape of
the distribution for a-c boundary runaway. We have evaluated Eq. (16) as a
function of S” for a number of values of V for the case of a thin film of Ge on
a fused silica substrate, since the experimental results reported in Sec. II 8
were obtained for this case. The values of K] = 0.035 cal/cm sec9C, x; = 0.09
| ’ cm?/sec and K2 = 0,0025 cal/cm secoC, x» = 0.005 cm?/sec were those for Ge
(1), and fused silica (2). The thicknesses used in the calculation,
appropriate to our experiments7 were by = 0.3 ym for Ge and by = lmm for fused
silica. With these values, B = 240, and M = 18,

Figure 10 shows F(S~,V) as a function of S~ for several values of V.
For V 3 0.1, the leading edge of the temperature distribution begins to

sharpen, and the peak value begins to drop. This is an indication that V has

. i
-

reached a value at which diffusion of heat can no longer restore the static
temperature distribution as the heat source moves, It should also be noted
that the fact the two portions of the curves of FX (S”,V) meet at $S” = 0 is a

significant check on the correctness of the numerical calculation, since the
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Fig. 10. F(S”, v) as a function of S” for several values of V.
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, formal expressions for [F*(S*,V)]s- = g and [F-(S*,V)]s- = o are not
: identical.
o To obtain quantitative results for Vac, we make use of Eq. (15) and
' assume that Tc is a fixed transition temperature (modification of this
assumption is discussed in Sec. V). The relation to be solved for V can be

written,

Il/zn‘Vac = [F(O, Vac)]-l . (17)

We plot log [F(0,V)]-1 vs log V and Tog [#}/2n“¥] vs log V on the same graph.
The solution for V5. will be given by the intersection of the two curves.

Y Figure 11 shows [F(0,V)]-1 for M = 18, and for several values of B. We
consider first the curve for 8 = 240, corresponding to our experiment. One of
the straight lines shown gives log [%1/2n“¥] for n” = 2.2, and we see that

there is no solution for this value of n“. The minimum value of n” for a

steady state solution, n“njp, corresponds to the lowest temperature (T.) at
which runaway can occur. This solution is obtained when the two curves first
cross, and is found to occur when n” = 6.1. For values of n” greater than
6.1, there are steady state or runaway solutions for Vac which decrease with
increasing n”. It should be noted that the two curves first make contact
tangentially as n” increases to n“mjn. This is similar to the integral
equation result, Eq. (10).

It is difficult to identify the first true "crossing” point for two
curves that approach each other tangentially. Roughly, for n” = 6.1 the two
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Fig. 11. Plots of log [F(0, V)] vs log V for B = 240, 120, and 60, and
plots of log [w]/Z n’v] vs log vV for n* = 9.0 and n”~ = 2.2.
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curves cease to run parallel for log V ~ 1.6. Using the relation v ~ 4k1V/b2,
with x1 = 0.09 cm?/sec, and by = 10-1 cm, we find, vac = 140 cm/sec. Larger
values of n” should lead to smaller values of vac, consistent with the
integral equation result, Eq. (10).

From the relation (14c), we can calculate the value of T, if we equate
n” with n’nin = 6.1 and Tp with the experimental value of Tp, ~ 500°C. This
leads to T, ~ 550°C, much lower than the value of ~ 680°C obtained from the fit
of the periodicity data to the theoretical results obtained from the integral
equation model. As we shall see shortly, the discrepancy can be explained
qualitatively by the presence of a thermal barrier between film and substrate.

We can attempt to approximate the calculated F(0,V) in the form
F(0, V) = f/[r+v2]l/2 | (17a)

where f and T are to be determined for the best fit. Equation (17) would then
be precisely of the form Eq. (9), obtained from the integral equation, where
n=fn“. The open circles in Fig. 11, representing Eq. (17a) with I = 7,95 and
f = 0.093, fit the calculated curve of log [F(0,V)]}-1 with 8 = 240 and M = 18
for small V and large V, but fit poorly in between. This value of f is much
lower than that obtained from the integral equation fit to the perfodicity
data, f ~ 0.58, As we shall see shortly, this descrepancy can also be
qualitatively explained by the presence of a thermal barrier between film and

substrate.
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We have examined the effect of changing by and bz on the values of a
number of properties of a-c boundary runaway. Figure 11 shows plots of log
[F(0,v)]-1 vs log V for M = 18 and 8 = 120 and 60, in addition to the curve
for 8 = 240, which corresponds to our experiment. We can interpret the
reduction in B as due to either a decrease in by or an increase in by, The
results obtained for Vac and vac for n” = 9.0 (corresponding to fixed Tp, and
well above n’min for all 3 values of B) are listed in Table I. It can be seen
that for by held fixed at 0.3 um , vac decreases only slightly as b?
decreases. On the other hand, for b2 held fixed at 103 m, Vac decreases
almost inversely with increasing bj. However, in most cases it might be
difficult to see this striking drop in vy, since at temperatures above Tp,
spontaneous fluctuations can cause the a-c transformation (see Sec. V.)

Also shown in Table I are values of n“pin, Wwith corresponding values
for Vac and vy, as well as approximate values of f and I'. It can be seen that
f increases nearly inversely as 8 decreases, while I increases slowly. It
should also be noted that n’yip decreases as by increases. This means that
the lowest value of Tp for runaway, Tp, decreases as film thickness increases,
As the film thickness by increases, the velocity vac for n“wipn increases, but
remains in the range of 100-300 cm/sec.

The small values obtained for T, and f by applying the present theory
directly to experiment can be understood if we postulate the presence of a
thermal barrier between the fused silica substrate and the amorphous Ge film

in our laser crystallization experiments.” The presence of a thermal barrier

37

et

g b e AR AR . A b oo




PR . S il ssemiilibstmnescineane -
i T %
[
L .1
pf.-
| ¥
A ook
I
Loy TABLE 1
“' i { Results of Two Dimensional Solutfon for a-c Boundary Motion .
. ! . ,
1 5 Values of a number of quantities calculated from exact solutions of a model of laser \
‘ crystallization, as obtained from Fig. 11. For three values of the parameter 8, |
effective parameters f and T and the minfmum value of n” for runaway, n° min, are given.
With n“ = n” min and n” = 9,0, normalized velocities Vac for a-c boundary runaway are
obtained. For combinations of substrate (bz) and film (by) thicknesses given, these
values of Vac lead to the a-c boundary runaway velocities vac that are shown,
| Vac Va b2 by  vac(cm/sec) vuc(cm/sec)
B f T wan (nenmn) (n9.0) () (M) (n*n‘mgn)  {n°=9.0)
’ 240 0,093 7.95 6.1 39 10 103 0.3 140 36
' 103 0.6 170 14,7
120 0.178 8.72 3.2 47 4,07
‘ 5x102 0.3 29.3
108 1.2 255 6.8 :
60 0,331 10.15 1.7 n 1.9 i
i
} 2.5x102 0.3 27.4 {
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is not at all unreasonable, and could be readily included in the derivation of
modified equations (14a) and (14b). The effect of a thermal barrier is
approximately equivalent to decreasing the thermal conductivity of the
substrate, and is therefore qualitatively described by decreasing g (although
the thermal conductivity ratio appears in M, this describes the way heat
diffuses once it is transferred to the substrate and should therefore be kept
fixed for this crude argument). To obtain a rough idea of the effect of such
a barrier, we examine the effect of decreasing g by comparing the results for
B = 240 with those obtained for 8 = 60. Referring to table I, we see that for
8 = 60, f has increased to 0.331, much closer to the empirical value 0.58
determined from the experimental data by comparison with the one-dimensional
integral solution. Furthermore, n” pin has dropped from 6.1 to 1.7, yielding
a value of T. = 665° determined from equation (14c). This is close to the
value of 680° C obtained from the fit of experimental data to the integral
equation model. While this argument is very crude, it does suggest that the
presence of a thermal barrier can eliminate the discrepancy between
experimentally determined parameters and the results of a first-principles

calculation.

IV. Steady State Laser-Guided Solutions
An intriguing class of steady state solutions exists in which the a-c

boundary proceeds at a constant velocity on the leading edge of the scanning

laser image. Solutions of this type will be obtained for both the integral
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equation model and the two-dimensional model of the a-c boundary motion. The

laser-guided mode of a-c transformation could have important implications for

PPor SR R
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the controlled growth of semiconductor films. The question of the initial

conditions which permit the system to settle into the steady state

laser-guided mode of motion will be discussed in Sec. V. . u
A. Integral Equation Model

To find laser-guided solutions, we rewrite Eq. (3) in

the frame of reference, moving at normalized velocity V, in which the laser

IPUSUR

and a-c boundary temperature distributions are stationary. The result is 1

PR o

1aT20) +n [ > [V/(=1)1/2] [exp er (r-r')}]
L o (18)

o

x[exp eIV (=112 (= 17) }]dr‘ :

s ]

where T4“(0) is the reduced temperature due to the scanning laser image at
the positon of the a-c boundary, T,%(0) = Tg(0)/(Tc-Tp).

As in Sec. III A, the integral in Eq. (18) can be evaluated exactly for

A1 o el S .

large enough 15, and we find
1 =Tg2(0) + wal/2 7 [r+ v2]1/2 . (19)

According to Eq. (19), for values of n and V such that wal/2/[r + v2]1/2 ¢ 1, ‘
there fs a value of T,/(0) which will satisfy the condition for a . 1

laser-guided solution. For given values of V (determined by laser scan
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velocity) and n and a given reduced temperature profile due to the laser, the
(a-c) boundary will ride at a distance in front of the laser image such that
Eq. (19) is satisfied. It should be noted that solutions of Eq. (19) exist
for values of V arbitrarily small, The question of coupling into such
soluttons in real situations is discussed in Sec. V.

B. Two-Dimensional Solution

It 1s a straightforward matter to show that the two-dimensional
solution of the laser crystallization problem also leads to laser-gquided
stationary solutions. As shown in Appendix B, the solution of the steady
state temperature distribution for the boundary value problem in the presence
of several heat sources is the superposition of the solutions in the presence
of the individual heat sources. In the presence of both a laser source of
heat and the heat source due to the moving a-¢ boundary, the solution for

steady state runaway, Eq. (15), becomes

1 =Tg%(0) + nVal/2 § _fn+ (V

n+
[Tas + V2]

= T47(0) + nVel/2 | fn-(v
n=

, (20)
[ fy+ V2]

where T4“(0) is the reduced temperature due to the scanning laser image at the
position of the a-c boundary. The close correspondence between the

two-dimensional solution Eq. (20) and the integral equation solution Eg. (19)

should be noted.
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Using the definition of Ft (S-,V), Eq. (16), we obtain for the
laser-quided problem an expression analogous to Eq. (17), which was solved

to determine V¢ for runaway. The result is

wl/2q-v = [F(O,v)]-1 . (21)

We may think of n°/[1-T“(0)] as an effective value, n’eff. Referring to Sec.

III1 B and Fig. 11, it can then be seen that by decreasing 1-T3“(0), the

normalized laser scan velocity V for laser-guided steady state solutions can
be reduced greatly. For a given reduced temperature distribution due to the
laser scanning at velocity V, the a-c boundary rides at a pbint in front of

the laser image satisfying Eq. (21).

V. Discussion

One of the important assumptions made in calculating the motion of the
a-c boundary for both the one-dimensional integral equation and
two-dimensional solution was the existence of a sharply defined transition
temperature Tc. In fact, the velocity of growth of crystalline material
directly from the amorphous state, $(T), is a function of temperature,

increasing rapidly as the temperature is raised. This could be interpreted as

Do ARG, IR W il v bl v et

determining the temperature Tc(§) at which the transition can take place at a
value of § demanded by the heat flow calculation. From this simplistic point . ‘

1
of view, over a wide range of values of §, Tc varies relatively little and can I

be taken as constant. As already pointed out in Sec. II B, the model solution
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of the integral equation at the beginning of each period of boundary motion

requires infinite velocity, and the presence of amorphous and fine-grained
material in the initial portion of each period may be related to the limits on
the rate at which crystalline growth can occur,

We could attempt to improve the approximate description of the boundary

motion using the integral Eq. (3) by replacing n by the quantity

neff(S) = £ L(S)/[Te(S) -Th] (22)

where T.(S) is the critical temperature appropriate to the value of $, and
L(3) is an effective latent heat which is that portion emitted when partial
conversion to crystalline material takes place at boundary velocity §. We now
interpret § as the velocity of a "heat flow boundary", which is identical to
the a-c boundary when that boundary is well defined. We can see that at large
§, neff(S) is reduced because L($) is reduced and T.(3) is increased. At
lower values of §, L(3) »L, and Tc(§) ~Tc. The introduction of an neff(S)
of this form could eliminate the unphysical singularity in the initial motion
present in Eq. (3), while still yielding a very high initial value of §,
consistent with the initial amorphous and fine-grained polycrystalline
material in each period. The introduction of an n’eff(Vac) in Eq. (17) would
also modify the exact solutions obtained for Vac from the boundary value
problem,

As mentioned in Sec. II B, the value of T, obtained by fitting the

results of the integral equation solution to our experimental data was
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Tc = 680°C, very close to the value of 696°C predicted by Bagley and ChenlO
for the transition temperature from the amorphous to liquid state of Ge. It
has been suggestedl4,15 that "explosive" crystallization (or runaway) may
correspond to the occurrence of this transition, and some experimental
evidence supporting this point of view has been obtained.l6 If, in fact, T
does correspond to the amorphous-to-liquid transition, the assumption of a
fixed T. over a range of § 1s reasonable. Once the transition from the
amorphous to the 1iquid state had occurred, the unstable liquid would rapidly
transform to the crystalline state.l0 For small temperature differences
across a thin liquid layer, the treatment we have presented would then require
no major modification.

Throughout this paper, we have treated the amorphous and crystalline
regions of the semiconductor film undergoing laser crystallization as istropic
and homogeneous regions, with the transformation from the amorphous to the
crystalline state governed by macroscopic heat flow equations. An important
ingredient absent from this description, and essential for even a qualitative
understanding of crystallized film morphology, is the role of nucleation
centersl? and "nucleation events". Because the exact nature of the a-c
transformation in laser crystallization is not yet certain, we will not
attempt a detailed description of nucleation. We regard a nucleation event as
a spontaneous, localized fluctuation which initiates a transformation from the
amorphous to the crystalline state and produces a small increase in local

temperature above the background determined by macroscopic heat flow. A
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nucleation event has a probability of occurrence which increases with the
density of nucleation centers (which depends on film perfection) and with
> increasing temperature. For Tp just below Tp, the lowest temperature for

runaway, nucleation events can produce transformation from the amorphous to

crystalline state in small regions of finite range about nucleation centers.l8
For T, ~ T and in the absence of an external disturbance such as a laser

beam, multiple nucleation events can occur, overlapping and spontaneously

transforming the entire film to the crystalline state in a short time if the
! probability of such events is high enough. From the discussion of Sec. III B,
the lowest value of Tp for runaway, Tp, is higher for thinner films,
decreasing as the films become thicker. Since the probability of nucleation }
events increases with increasing temperature, spontaneous transformation to
the crystalline state should occur most readily at Tp ~ T for thin amorphous
films. This is consistent with our observation of laser-induced runaway for
films of thickness greater than 1 im, while only spontaneous transformation is
observed for films 0,3 um thick.

The occurrence of nucleation events appears to play a major role in the
morphology of laser-crystallized films. In the films that we have examined in

detail, the elongated crystallites within each periodic feature form a roughly

TP ORI

chevron-1ike pattern, with the two halves of the pattern symmetrical about an

axis that is parallel to the laser scan direction and located near the center

of the laser image. The elongated crystallites on each side of the pattern

have their long axes aligned along [100] directions. A blown-up picture of a
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crystallized film near the center axis of the chevron pattern is shown in Fig.
12, The "origin" of the chevron pattern within each periodic feature is

a small region located somewhere near the center axis. The exact lateral
position of the origin varies from one period to the next over a distance of
perhaps 100 im (~ 10% of the s1it image length). This suggests that the
origin represents the position of the first nucleation event within a
periodic feature where the heat flow boundary is moving slowly enough for
large crystallites to form. The first nucleation event would be likely to
occur near the center axis, since the laser slit image is an ellipse of high
aspect ratio and the temperature shouid therefore first reach T. near this
axis. Once nucleation and growth of large crystallites began, heat would flow
forward, but also laterally, raising the temperature and inciting the
nucleation of new growth centers laterally. The direction of growth from
these centers would tend to be channeled by such factors as interaction with
neighboring crystallites already formed,l9 strong anisotropy in the
directional dependence of growth rate, and perhaps stresses in the film. The
result of all of these influences would combine in a statistical way, but it
can be argued that the outcome would be largely determined by the tendency of
growth to occur along the direction of the temperature gradient at the a-c
boundary, combined with the high rate of growth along a [100] direction
compared to other crystallographic directions., Motion of the a-c boundary
would occur laterally as well as along the laser scan direction, but a

periodic morphological pattern would still result. This description is
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consistent with the observed chevron pattern, and could serve as the basis for
a more complete analysis.

In Sec. IV we discussed a class of laser guided stationary solutions of
both the integral equation formulation and the two-dimensional formulation of
a-c boundary motion. The problem remains of identifying spatial and temporal
initial conditions which allow the boundary motion to settle into such a
constant velocity stationary state. The solution of this problem could have
jmportant implications for the possibility of producing uniformly aligned,
laser crystallized semiconductor films. In studying solutions of the integral
Eq. (3), as discussed in Sec. IIA, we noted that for a given interval &t used
in numerical integration, values of normalized laser scan velocity V could be
found which were large enough to generate damped oscillatory behavior in S{t).
After a few cycles, S( 1) settled down to a constant value, consistent with the
a-c boundary riding at a fixed distance in front of the scanning laser image,
as expected in a laser-quided stationary solution. However, if V was now held
fixed and &t decreased further, the damped oscillatory behavior was again
replaced by perodic relaxation oscillation behavior of the type shown in Fig.
2 for n= 0.3 or 0.6. These numerical results are to be expected, since a
given value of &t gives rise to an effective finite initial velocity Veff of
the a-c boundary, and for a value of laser velocity V > Vaff, damped
oscillatory motion should result. On the other hand, Eq. (3) is
characterized by singular behavior of the initial velocity, so that decreasing

6t sufficiently will increase Vafr to the point where Veff > V, and the a-c
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boundary again outruns the laser, resulting in periodic relaxation
oscillations. As we have seen, this singular behavior of the initial velocity
of the a-c boundary is unphysical, and would probably be eliminated from the
mathematical description by replacing n in Eq. (3) by a velocity dependent
neff given by Eq. (22). Under these circumstances, the nature of the solution
obtained should not depend on the interval &t chosen for numerical
integration, provided that &t was sufficiently small. The argument implies
that for a small value of laser scan velocity V, the initial motion of the a-c
boundary would be characterized by some finite velocity Vo. For laser scan
velocity V > Vo, we would then expect a damped oscillatory behavior of S(t),
with the motion settling into a laser-quided stationary state. A slow }
decrease in V could perhaps then lead the a-c boundary motion into a
laser-guided stationary state at a lower velocity, with the a-c boundary
riding close to the thermal image of the scanning laser. However, the
stability of such states remains questionable. All of these points are highly

speculative, and require further exploration. %
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APPENDIX A - Numerical Solution of Integral Equation

The non-linear integral equation (3) cannot in general be solved
exactly, and approximate solutions must be obtained numerically. Although
the results are not entirely satisfactory, to solve Eq. (3) we have used a
slightly modified rectangular rule to evaluate the fntegral, making use of the
already determined values of S(t”) at earlier times t” to evaluate S(t )
self-consistently at time t. The modification of the rule consists of removing
the singularity in the integrand at t“= t by treating all terms except
(1-1°}1/2 in the integrand as constant in an interval &§t°, and integrating
(t-1°)1/2 over the interval &t°. The integral equation (3) is then replaced

by the approximate equation,

n-1 S +V
1=aexp S 20+ n J vy L'm exp {-T(m-1) ¢ x (A1)
n m=0

(Tn"l'm)l/2
exp {'[Sn'sm +V (p-m) R /(Tn-ﬁn); 6t ,

where ypq = 2(n-m)1/2 [(n-m)1/2 - (n-m-1)1/2], and

§m = Sm - Sm-1 s m #0; §° z 0,
St

Sm is the value of S at t = 1y, and (Al) is solved for S, using the values of
Sm determined for earlier times. When §m < -V, the assumption is made that

the front has ceased to move, and (§m + V) is set equal to zero.
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o Once the set of values Sg, S1, ... Sy has been determined, the reduced t
P temperature at point S at time t = t,, given by Eq. (5), can be determined L

numerically using an approximate trapezoidal rule which yields the relation, r
1

. 2 n-1 § +v

T° (S’ t) = aexp {-S° }+n § v m x
n m=0 nm
(v - 1)
n m

exp {~-M(r - 1)) x
X n m H

2
exp { [5°-Sn+V(m- wl /(m- mlec. (A2) 5

Equation (A2) has the advantage that it gives reasonable results for S” well i

away from Sp, and agrees exactly with (Al) for S° = S,, However, it gives r

r ' rise to a spurious spike near S° = S,. The origin of this spike can be seen
by comparing the second exponential in the integrand of Eq. (5) with the

. ) corresponding exponential in the summation of (A2). For S” #S in Eq. (5),

the exponential term + -= as 1t + 1 yielding a vanishing contribution to the
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integral. The term corresponding to t* + t in (A2) is
2
-[S° -S +V 81]

n-1 » Yyielding a non-vanishing contribution of the summation
(81

which peaks up when S ~§ 1" V&t and gives rise to a spike of width

172
AS” ~ (87) / . The spikes have been substracted out in the plots of
T*(S*, 1) vs S shown in Figs 7, 8, and 9.
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Appendix B - Two-Dimensional Stationary Solution of a-c Boundary Problem

.'k.." .

We consider a two-dimensional heat flow problem in which a moving

2
R

source of heat scans at a steady velocity v along the surface of a film (1) of
thickness by deposited on a substrate (2) of thickness bz (see Fig. B1). If
the properties of the film are the same whether it is in the crystalline or
the amorphous state, we need not at the moment specify the state of the film.

We assume that the moving source deposits heat only in the film and uniformly

in the x-direction. The heat flow equations in regions (1) and (2) are then,

9 o T
s 3T, N .oan
K + -C Sl +G (y-vt) =0
} 1{_3)(2 ayz- 1% T
} [.2 2. ]
Kz {372+ 3T2) - Copp T2 =0,
axz wzd 3t

where G(y-vt) is the heat energy delivered to the film per cm3 per second.

———

If we consider only stationary solutions in a frame of reference moving

with velocity v, then T} and T2 are dependent on time only by virtue of their

e Pt —amtcampe - -

; dependence on (y - vt). In this moving frame of reference these equations

become,
'
2 2 .
aT1+aTl+c1plvarl+GU = ( (Bl)
Frali - aht b A (e "
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Fig. B-1. Diagram for the calculation of the exact stationary solution
of moving a-c boundary problem.
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aZTz + T2, Cappv 3T2 =0 (B2)

X2 P K2 u

where u = y - vt,

The heat flow out of the film surface is zero:

[aTl(x,u)] =0 (B3)
x x=0

The boundary conditions at the interface between film and substrate require

that the temperature and heat flow across the boundary are continuous:

T1(x, = [T2(x,

[Ta(x u)x]“bl [T2(x u)]x.bl . (84)
a1 (x,u) - aT2(x,u)

“ [‘Tx—] x=b} X2 ["‘_'—ax ] x=by ) (BS)

At the base of the substrate the temperature is Tp:

[T2[x,u) ] =Tp . (86)
x=(by + b2)
We now assume the film is so thin that the temperature variation across

it 1s quite small. Integrating (Bl) with respect to x, and using (B3) and

.
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(B5) to eliminate 3Ty/ax yields,

2 :
K2 a2 ¢ dT1 4+ pC1v T1  + 6(u) =0 (87)
b1K1 x il K1 u K1
x=b1

Finally, if we allow by to become very small compared to by, we can write the

coupled equations to be solved for Ty (u) and T2 (x,u) as,

2 2
3l2 ,23T2 v M2 . ‘ (88)
a2 wl R W
2
K2 [3T2 +9N1 v M1, GEU) =0 (89)
Slkl[ax]x-o T G w 1

with boundary conditions

Ti(u) = [T2(x,u)] (810)
x=0

[T2(x,u)] =Tp . (811)
x=b2

We introduce the Fourier integrals of (Tj(u)-Tp) and (T2(x,u) - Tp):

n(k) = [ (Ti(u) - Tp) efku du (812)
T2(xk) = [ (Ta(x,u) - To)etkv au (813) :
58
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with inverses

)T = L[ Al etk o,

LS

T2(x,u)-Tp = 21_ f;: ©(x,k) e-Tku dk

L

Applying (B12) - (B15) to (B8) - (Bll), we obtain

2
R _H Hag
ax2

T = 0
C 2]b2
where g(k) is the Fourier transform of G(u),

g(k) = f' G(u) elku dy ,

o 2 k2 4+

vk , and
2 2 .

o =kZ+1 vk .
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The solution of (B16) is of the form,

12 = Ae®@X + Be-®RX ,

(B21)

Substitution of (B21) into (B18) and (B19) permits the expression of A

and B in terms of 7j. Further substitution of these expressions into (B17)

gives the solution for 7 in the form,

1, = 9/K1

@+a K2 coth (ab,)
1 2 biKy 2’2

The inverse Fourier transform (B14) leads to the result,

o K -1ku
i) =Ty e 1 g7 SRk e &

2% -o» o + a KZ_  coth {cgb?)
2 1K)
We will take G(y-vt) = G(u) to be of the form,

G(y-vt) = G » o(u) where o(u) = 0, u < =D, u > D,
ou) =1, D7 ~<D.

This form yields,

g(k) = 2sinkD « G
k
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It is important to note that for several heat sources, g(k) ts the ‘ 1
-; superposition of contributions due to the individual sources. Thus, for a
case in which separate laser and latent heat inputs are present, the solution g
of the problem is the sum of individual terms of the form (B23). i

With g(k) taken to be of the form (B25), we will write the integral E ‘

, (B23) in terms of normalized quantities. We introduce a characteristic

normalization length d to be specified and write,

| TI(S°) = Tp + 1 f° (6d2/X3) 2 sin gD e-1957 dq (B26)
77 e q -41(q) + A(q) cot Q(q) ;

where q = kd, D* = D/d, S = u/d, :

2ir(q)1/2 = qd = [q2 + 41vq]1/2,

4 Qq) = -1(ad) (b/d) = 2 [r+ 2V [M-1} {-V ¢ [r+ V2]1/2}]1/2 (by/d), (B26a)
and
B = K2d2 . :
X1b1b2 |

M = K/ ’

. V =dv/dq .

The quantities B,M,V are the important parameters of the model. For

convenience we will in this appendix, choose d = by so that 8 becomes |




K2b2/K1bj. The (%) sign in Q(q) represents the fact that for a given value of
r(q), there are two values of q given by,

q=2i {-vt[r+v2]l/2) C,

e

with the + sign corresponding to postive imaginary q and the minus sign

=4

corresponding to negative imaginary q.

The notation p | signifies the principal part of the integral:
) - ©

pf dq=f dq+ [ dq, where € is an infinitesimal quantity. This is

- 0o -0 +e

TR s S Fe

important in evaluating (B26), since the integral is singular at q = O. H
The integrand in (B26) is a single-valued function of q with poles
[ given by q = 0 and

D(q) = -4 r{q) + A(q) cot Q(q) =0 . (B26b)

If Q(q) 1s complex, as it will be for much of the complex q-plane, Q(q) cot Q{q)
is still well defined. For Q(q) pure imaginary, QcotQ + [Q] coth {Q|.

-

o 3

The integral can be evaluated by contour integration after

TS

s : appropriately closing contours at |g| = =, Sin qD” is written as

(eldD” - e-1aD")/2i, and the individual integrals are of the form

.
M T I PR TR R

p [ e-1al f(q) dg .

For Z > 0, the contour is closed in the Tower half plane, while for Z < 0, the




contour is closed in the upper half plane. The integrals can be evaluated
using the residue theorem. The contributions from the zeros of D(q) are

obtained by writing D(q) in the vicinity of the n-th pole as

a), * Egéﬂl] deg @
which introduces a factor of (aD(q)/aq)q=qn into the denominator of the
expression for the n~th residue. For large values of the parameters B8, the
case of interest here, the zeros of D(q) 11e on the imaginary q axis in both

the upper and lower half plane {corresponding to r(q) real).

Without going through all of the arithmetic, we present the results of the
evaluation of (B26) after performing the contour integrations. Tj(S”) can be

written as,

Ti(S°) = Tp + | (6d2/Ky) Fp+ (S” - D°) = Fne(S*4D")} (s < -D")
n+ .

Ti(S°) = Tp + | (Gd2/K1)Fpe (S° - D?) (B27)
n+
- 1 (Gd2/K{)Fp. (S~ + D) + (Gdz/K1) (-0 < $° < D”)

n- B

T1(S?) = Tp + J (6d2/K1) Fp- (S” + D“) <Fn -(S° - D)} (D° < s°)

N=
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; where
s
Y o[-V £ (It + V2)1/2]22 s
> Fnt (Z) = , (828)
\ (®4/30ns (3/@)ns 20V & (1 + v2)1/2]
4 n
3
1
2 D =-4r(q) + 8Q (a) cot Q (q) ,
bt + . t
3
' -4r(q) = q2 + 4 ivq, and
A
L Q (q) =2[r+2v[M-1] (-v £ (r+v2)l/2y] 1/2,
{ +
S The Tph: correspond to the zeros of Dy . The values of q corresponding to I'ns
are
Gt =21 {-V 2[1}\:*‘/2]1/2} .
The I's are real numbers while the q's 1ie along the imaginary axis.
We will be concerned with the case where D” is very small. Expanding
Fnt (S” -D”) and Fpt (S” + D) to first order in D“, and taking the remaining
f derivatives in (B28), we obtain
f : . 2 :
. TI(S”) =Tp + | 0 (6d"/K1) . :
‘ n+ cot ‘
]

2
8 n+ - €sc 1+ V (M1 ] .
Un+ M; { JIns + a?.)}
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. 2.1
e-2VS* ¢=2 [Ins + V212

[S°1

TI($7) =Tp + |
0

e-2V5” g-2[In- + V22 57|

[ Tp- + v2]1/2

(s <o) ,
[ Tpe +v23}/2
D- (6d2/K]) S
[2 - 8 )cot Qn- -csc? Qpdh. Vv (M-1) (]
;6n- n}{ rn_+V)}
(829)
($S° > 0).

Now, suppose that the source of heat enerqy delivered to the film is

the latent heat given up as the a-c boundary moves. The energy G delivered

per cm3 per second is,

G = Loyv
—a

where 2D is the width of the region over which this energy is delivered in

i 4T b B A LA AR IR a8




time 20/v. Introducing normalized quantities,

(6d2/Ky) = 2LV (830)
VT e

Substitution of (B30) into (B29) and some simple manipulation of the

resulting expression leads to,

T1(S°) = Tp + %!_2 e-2VS” @-2(In+ + V2]1/2 IS (B31a)
b [Te + V2]1/2
1
1-p/2 JSOt Qn* _ (g2 1+ VM- ]
[1-¢/ — Tt "~ ° % Pn+ + v2)
(s-<0) ,

[ x (831b)

. 241/2
T ($%) =T, + LV | e2VS” e-2[Th. + V')
! b" Ty a [r,_+ vZ]172
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1
[1 - 8/2 )eot Qn- - esc2 Q= )1 - V(M-1 ]
Qn- ,/tl‘n- + v2)

(s> 0).

Equatfons (B3la)and (B31b) are used to calculate the velocity of the a-c

{ boundary in the steady-state runaway condition in Sec IIIB.
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